
,)AO9 952 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
APROGRAM4 FOR THE CONVERSION OF PRODUCTIONS IN AN EXTENDED BACK--ETC(U)

JUL go E E MCCOY, T WETMORE
UNCLASSIFIED NPS2-8 -010 lM L

UTEli..._-]" o

IIIH136__~ LIII'2MIC 3C0 1111-2
11111 I11,2

1011112.0

1 .12 111111.8

MICROCOPY RESOLUTION TEST CHART

NPS52-80-010

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A PROGRAM FOR THE CONVERSION OF
PRODUCTIONS IN AN EXTENDED BACKUS-NAUR-FOR4

TO AN EQUIVALENT BACKUS-NAUR-FORM

by

Earl E. McCoy
and

Thomas Wetmore III
University of Connecticut

July 1980

* Approved for public release; distribution unlimited

80103 087

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

Reproduction of all or part of this research is authorized.

Computer Science

THOMAS WETMORE III
University of Connecticut

Rev eweb Released by:

nan W. M LES
artmen f uter Science Dean of Research

Unclassified
86CUMI, cl.AIICAYIW OF Two$ Maas e".m . a...*

RIPOUT DOCUMINTATOM PAGE RZAD IU In~s
I I U £ AL G frUom

t~~~lLE~ n 0. Ayp 06066. asne covempo
tfOGRAM FOR THEJUVERSION OFEBQDUCTIONS IN AN
ENDE!WCKUS-I R -FORM TO AIFEQUIVALENT echnical ept 0.,

/0)714 arEJcoy 9-L omas/Wetiore.III

Naval Postgraduate SchoolaWA 6OU11 12CU-

Monterey, California 93940

'I CONTMOLLING OPIC6 waN8 66w0 aDesua

Naval Postgraduate School JuIY 9
Monterey, California 93940

14. 00WITORING 4696CV ft&60S 6 ASSSESSVIO Agg.hI ban CapmW10s. 0me*) ; v CLASS. too. ~

Unclassified
M&. LFfck UUICATIW", wgpo

It. 006TWeOuTION STATft&W (o et t Awwwo

Approved for public release; distribution unlimited

07. OISTmsOuTIaw SYAT*W6NT (of Me .s~fpme atmd on W1efM if It p h~uin Aw

IS. SUP90CIARV NOTRS

so. way WORMS (c'I""'e -* mow". *14f ## av...gain ow Wen"I or wo aOe
Conversion, Productions, Grammnar,* Backus-Naur-Form

This1 rprdecie th usof a computer program that converts a gralmmarli
production rules from extended Backus-Naur-Form to another equivalent set of

S production rules in ordinary Backus-Naur-Form suitable for use with the Yet
Another Compiler-Compiler (YACC) system. This permits the language designer to
use the far less bulky EBNF formats, and then to automatically convert to BNF for
use with YACC. A PDP-11 computer system running the UNIX operating system is
ass umed.

DO JA 14731 ggot o" F INoveggggy Gnclassified 7a
(Page 1) In 0163-010440 Uncassfie

ahteSY ~MUIA?3U erTm,.PasofIn

ABSTRACT

This report describes the use of a computer program that converts

a grammar's production rules from extended Backus-Naur-Form to another

equivalent set of production rules in ordinary Backus-Naur'Form suitable

for use with the Yet Another Compiler-Compiler (YACC) system. This permits

the language designer to use the far less bulky EBNF formats, and then to

automatically convert to BNF for use with YACC. A PDP-11 computer system

running the UNIX operating system is assumed.

I Introduction

This report describes the use of a computer program that

converts grammar production rules in an Twtended Backus-Naur-Form

(EBNP) into ordinary Rackus-Naur-Form (AMP). ENP is very con-

venient for a human descriotion of a grammar but is not in a for-

mat acceptable to the Yet knother Comoiler-Comniler (MCC) system

[John75l. Y4CC requires the far more bulky format of ordinary 31,P

which is inconvenient for human use. The program whose use is

described here is itself a translater written for the YNCC sys-

tem; the BNF it produces can be used for the input to YkCC to

yield a parse table and other processing for the original EB'P

grammar.

The ERN to IMP converter program is stored in the Naval

Postqraduate Rchool Computer Sciences Laboratory under the name

"ebnftobnf". It is intended to work on a POP-ll under the UNiX

operating system. This technical report may be accessed on the

,JMIX system by typinq "man ebnftohnf".

I! The ERNP Syntax

The ERNP syntax acceptable as inout to the converter is

presented in this section. An example grammar is also presented.

RFRV makes use of grammar production rules consisting of ter-

minals, nonterminals, and a replacement operator. In the discus-

sion that follows we assume that terminal tokens are in uppercase

letters or strings of letters or are enclosed in single quotes.

The latter is usually reserved for trivial terminals such as

parentheses, semicolons, etc. Monterminals are lowercase letters

or strings of letters. The head symbol is the nonterminal "z" as

is the convention in some textbooks. The replacement operator is

the left arrow, written as <--.

Two sets of metasymbols in ERNP must be removed from the

grammar (by modifying the production rules) to produce an

equivalent RNP grammar. These are the square brackets [...I mean-

ing "zero or one", and curly brackets (...) meaning "zero or

more". As is usual in production rules the vertical bar I means

.or".

Consider the following example in ERN:

z <-- Al C

In RMP two Production rules are needed to exoress an equivalent

grammar:

z <- C 1 C

or

z <-- a' C

a' <-- null I A

In either case the grammar accepts only the strings "C" or "AC".

Consider the use of the curly brackets to mean "zero or

more":

z <-- A (A)

This produces all the strings of the form A, AA, AAA, 4AAA, anf

so the RNP equivalent must be:

or

z--ZA

-3-

z<--

The advantage of using RRF to describe a grammar is obvious

from these examples; it is unfortunate that YACC will not accept

a grammar in this form. In the next section the exact format of

the 9S3M7 productions required for processing by YACC is

presented.

III Use of the Converter Program

In this section a simple ERNF grammar is modified to the for-

mat acceptable to YACC, and the grammar converted to BM4 by the

translator arogram.

ks an example grammer consider the following production

rules:

z <-- (b;

b <-- (Cl (NJ 0

.ere z and b are nonterminals and A, C, 1, and ; are terminals.

Row might these productions by modified to a format acceptable to

the translator program?

Several symbols must be replaced in the 9RNP used above to

make produntions acceptable to YhCC. First, the replacement

operator must be a colon i:) instead of a left arrow ((--).

Secondly, all trivial terminals (ie. parentheses, semicolons,

etc.) must be enclosed in single quotes ('). Thirdly, all other

nonterminals must be explicitly Inticated to YACC. Finally, the

heaA symbol production rule must be the first (top) rule.

The above example production rules are manually converted to

-4-

yield to following:

%token N C ')

z : (bj ; ;

b : (Cl (A] D ;

Ns many of the %token statements as needed can be used.

Now consider the execution of the TRNE to B'P translator.

Since it is also a YhCC program input it first must he executed:

yacc ebnftobnf

This produces a file in your file space named "y.tab.c.". The

next step is to execute the C program In file "y.tab.c" by typ-

ing:

cc y.tah.c -ly

This oroduces a file named "a.out" that can actually translate

EqTP to SNF by the following command:

a.out <ebnffile >bnffile

where "ebnffile" is the ERMF inout file requiring translation;

the ordinary IMF equivalent will result in file "hnffile'. Choose

whatever names you like for these files. The apoendix shows the

example presented above before and after translation.

TV Using the BM' Equivalent

In this section the use of the 81P equivalent as input to

another YhCC process is described.

The whole purpose of the ERNP to IP conversion process was

to produce a set of production rules acceptable to YCC, and thus

.4 - . -

be able to build a "compiler" that can process a "program" in the

grammar to produce either a "yes" or "no" answer as to the

program's syntax correctness or to compile it to some other tar-

get language. To accomplish this the equivalent RNF grammar must

be embedded among other statements that indicate the terminal

tokens and a C program (possibly making use of L", (Leski).

To do this you must produce the same list of terminals used

in the conversion process (%token, %%), and prepend it to

the "bnffile". One VERY ITPORTAMT production rule modification

must be accomplished prior to resubmitting the "bnffile". The

conversion process typically revises the order of the production

rules due to the inclusion of new rules with new nonterminals. Re

sure to insert the original head symbol production rule back at

the very top of the list of rules; YACC requires this if a

correct parse table is to result. It may have been moved down the

list if it had square or curly brackets in its right hand side.

Finally aopend any C program for processing the grammar into a

target language to the list of production rules; separate them by

a %% delimiter line. See the YACC manual for details.

VIE Conclusion

This report describes how to convert a ROMP grammar to RMP

suitable to YACC. While the program has been tested and found to

work satisfactorily the usual disclaimer as to correctness must

he male. The conversion orocess yields new production rules with

new nonterminals. These new nonterminals are formed by con-

catenatinq the original nonterminals with prefixes such as "fst."

and "opt.", and the results for a complicated grammar can get

quite long. Use the editor to shorten them up if desired, but

preserve the uniqueness of each nonterminai. Some nonterminals

may contain sequences such as "._.; these are acceptable to YACC

and so may be left unchanged.

=!4

-7-

(John75l Johnson, Ste*phen C., "YNCC - Yet Another Compiler-

Compiler", Bell Laboratories, '4urry HIill, NJI 07974.

(Leski Lesk, M4. E., and S. Schmidt, "Lex - A Lexical Analyzer

t enerator", Bell Laboratories, M~urry 3111, NJI 07974.

APPR1DIX

**** The following is an example input file (ebnffile). *

%token N C D

z {b '; ;
b : ,Ci !A1 !

**** The following is an example output file (bnffile). *
*** Mote that the first two rules must he interchanged *
**** if it is to be used as part of a YACC inout via
** the a.out orocess.
* NMote the null oroduction: fst.b.:nulllfst.b. b ;

fst.b.:
I fst.h. b ;

z:
fst.h. b ')

opt. c.:
opt .A.:
oat . A. :

b:
oPt.C. opt.A. T)

***Pollowing is a listing of the 'ebnftobnf" program'

Itoken SYMI OL LITETIAL
%fdefine WJLL. n

struct node
{ char sy'mbol(301;
struct node *first;
struct node *next;

char symhol(301;
struct node *on;

Irammar:
rule-list;

rule-list:
rule
Irule-list rule;

rule:

nonteri ':' alternative list ;
-fprintf ("I)s%c0 O Sl->symbol, :)

for (on = S3; on MU~!'LL; pn = pn->next)
f pitems fpn->first);

if (pn->next == MUILL) printf(;
else printf ("01)

printf (";0);

nonterm:SY4O

S(S = ncreate (symbol, NULL, MU'LL);

alterativelist
alternativealist

=(SS - ncreate ("a", $1, MULEL);

alternative list 'I' alternative
flast (S1)->next =ncreate ("a", S3, MUILL);

alternative:
SS - ncreate NU",'PLL, MUILL);

I element list;
element-list:

element
I element list element

flast (Sl)->next S2

element:

I - lr, -

SYMROL S$Ls = ncreate (symbol, 'JLL, NULL);

I

I LITERAL
$S ncreate (symbol, NULL, NULL);

I

I '[element list '1'
(§S - ncreate ("o", $2, NJULL);

if (!lookup ($S))
{ printf ("0);

pitem (IS);
printf ("%cO ", ':');
pitems (2);
printf (";");

I

I' element list 'i'
= $S--= ncreate ("1", S2, MULT);

if (!lookup (SS))
{ printf ("0);

Pitem (IS);
printf ("%cO ", ':');
pitem (SS);
printf (" ");
vitems (S2);
printf (";");

Mdefine LETTER 'a'
Mdefine DII T '0'

yylex C)
C

int i, t, getcho;
char c;

while ((c - getcho)) - ' ' II c1- '0 I1 c =
if (type (c) -- LRTTPR)

symbol(i++1 -c;
while ((t type (c - symbolit++- getch())) - LITTE11 t M=rt I c nu ' ' I - .');

unqetch (c);
symbol[--il ." '

return (SYMROL);
I

else if (c u 'n
{ is=O;

symbol(i++1 -C;
while ((c a symbolfi++1 - qetch()) I- ''');
symbol~ij a 1 1;
return (LITERAL);

- LI1-

else return (c);}
.type (c)
char c;{

if (c >- 'a' && c <- 'z' II c > 'A' && c <- 'Z') return (LETTFR)
if (c >- '0' && c <= '91) return (DIGIT);
return (c);

nereate (string, first, next)
char *strinq;
struct node *first, *next;!I

struct node *p;

p = alloc (40);
strcny (o- symhol, string);
p-),first = first;
p->next - next;
return (W);

last (nn)
struct node *no;f

struct node *P;
for (p = np; p->next I= NT'JLL; p = o->next);
return (p);}

strcpy (s, t)
char *s, *t;(

while (*s++ -*t++);
}
pitems (np)
struct node *np;(

struct node *p;

for (p = np; p 1- MULL; p - p->next)
(pitem (p);
printf C" ");

oi te-n (np)
struct node *no;(

if (no->First Wu WILL) printf ("Ss", np->symbol);
else
{ if (stremp (no->symhol, "o") n- 0) nrintf ("opt");
else Printf ("fst");

plist (np)
struct node *ynp;

while (nn !- NULJEL)
(if (nnv,-first == WILL)

if~ (*(n.-3.'svmbol) =''1orintf .")
else printf (%%s", np->symbol);

else if (strcmp (no->symbol, "o") ==0)

fprintf ("..opt");
plist (n'->tlrst);

else
tprint f(.1lst");
plist (np->flrst);

n,,o -np->next;

strcino (s, t)
char sP., trl;

mnt i;
I - 0;
while (sil -- Nil)

if (s(i++l ')return (0);
return (stll - t~il);

char buf[il;
int hufp 0;
getch (

return ((bufp n-) ?qetchar() buft--hufpl);

ungetch (c)
int C;

buf~bufp++l c;

Idef ine TRIJR 1
4def ine VhLSR 0
strtuct node *newnonterm (1001;
int nonew n;
lookup (np)
struct nodie *no;

Int i;
for (1 0; 1 < nonew; i44)

-13-

if (equal (np, newnontermfiil))
return (TR'JE);

newnonterm(nonew++1 a o
return (FA~LSE);

II

equal (x, y)
struct node *x, *Y

if (strcmp (x->symbol, y->sy'nbol) 1- 0) return (FA~LSE);
else return (eqlist (x->first, y->first)l;

eqiist (x, y)
struct node *x, *Y;

while (x I- WPILL && y I- MULL)
fif (!eqtyte (x, y)) return (PAL9T);
if (strcmy)(x->symhol, y->symboI) 1- 0) return (FALSE);
if (x-)first I- WPILL)

if (leqlist (x->first, y->first)) return (M~SE);
x - x->next;
y - y->next;

if (x !- Y) return (FALSE);
else return (TRUE~);

eqeype ND y)
struct node *, *y;

if (x->first MU 4'LL) return (y->first -- WJE.L);
if (Y->first MU 'LL) return (FALSE);
if (*(x->symbol) -- 0I') return (*(y-)>symhol) 'o')
return (*(y-..symhol) m 1)

LA.

-14-

INITIAL DISTRIBUTION LIST

1. Earl E. McCoy 10
Department of Computer Science
Code 52My
Naval Postgraduate School
Monterey, California 93940

2. Thomas Wetmore 11I 10
Computer Science Department
University of Connecticut
Connecticut 06105

3. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314

4. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

5. Department of Computer Science 30
Code 52
Naval Postgraduate School
Monterey, California 93940

) L ~

